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Nonlinear oscillations and other motions of large axially symmetric liquid drops in 
zero gravity are studied numerically by a boundary-integral method. The effect of 
small viscosity is included in the computations by retaining first-order viscous terms 
in the normal stress boundary condition. This is accomplished by making use of a 
partial solution of the boundary-layer equations which describe the weak vortical 
surface layer. Small viscosity is found to have a relatively large effect on resonant- 
mode coupling phenomena. 

1. Introduction 
Motivated by the importance of containerless processing technology in space 

(Carruthers & Testardi 1983), we present a numerical study of nonlinear oscillations 
and other motions of large unsupported liquid drops in zero gravity. When gravity is 
negligible the liquid will tend to form spherical drops to minimize the surface energy. 
These drops will vibrate under the influence of external forces and, in the absence of 
a surrounding fluid, the only source of damping is the weak viscous effects generated 
in a thin layer along the surface of the drop. 

Lamb (1932, § 275) presents Rayleigh’s (1879) linearized solution for small 
‘vibrations of a globule’. The axially symmetric form of the solution is the 
superposition of modes of form 

r = a+s,P,(cosO) sin(o!t+r]) ( 1 . 1 )  

for the surface shape, and 

n 

for the velocity potential inside the drop, and the frequencies uO, are given by 

n(n- 1) (n+2) T 
( 6 J O , ) Z  = 

Pa3 

T is the surface tension, a is the unperturbed radius of the drop, and P,(cos 8) is the 
Legendre polynomial of order n with 8 the polar angle. 

Analysis of slightly nonlinear drop oscillations has been carried out by 
Tsamopoulos & Brown (1983) who showed, among other things, that the nonlinearity 
is ‘soft’. The frequencies of the first four modes were shown to decrease with 
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increasing amplitude. This has been verified quantitatively for the second mode by 
both experimental and numerical means. The pertinent experimental work was done 
by Trinh & Wang (1982) who used an acoustic levitation technique to simulate zero 
gravity. Numerical work was done by a marker-and-cell method by Foote (1973) and 
by Alonzo (1974). More recently Benner (1983) used a finite-element computation to 
further confirm this result. Benner reported some computations at  fairly large 
amplitude. At present there is no large-amplitude theory of drop oscillations. 

Our computations will emphasize oscillations of higher modes. We shall compare 
our results with the fourth-mode analysis of Tsamopoulos & Brown (1983) and with 
an interesting coupling between the fifth mode and the eighth mode which has been 
studied by Natarajan & Brown (1986) by a second-order nonlinear analysis. No other 
direct comparisons for this work have been reported. 

The numerical method to be employed is a boundary-integral technique or 
‘generalized vortex method ’ in which information known on the free surface alone 
is used to determine its motion, thus decreasing the dimension of the problem by one. 
This method has been used by Longuet-Higgins & Cokelet (1976) and by Baker, 
Meiron & Orszag (1982) to study the breaking of water waves. (References to  the 
work of Baker, Meiron & Orszag will be referred to as BMO.) It has been applied to 
the nonlinear Rayleigh-Taylor instability by BMO (1980) and to axially symmetric 
free-surface problems by BMO (1984). Pullin (1982) included surface tension in a 
study of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. 

We use the boundary-integral method in the dipole representation form developed 
by BMO. Their formulation is attractive because it results in a Fredholm integral 
equation of the second kind which may be solved efficient,ly by an iterative process. 
This formulation is described in 92 and some preliminary computations are presented 
in $3. 

In  the present work the boundary-integral method is applied to the axially 
symmetric motion of a liquid drop in dynamically inactive surroundings such as a 
vacuum or low-density gas. Surface tension is essential to the problem and weak 
viscous effects are accounted for by a new method. The effect of small viscosity can 
be incorporated into free-surface problems because the primary effects are confined 
to thin weak vortical surface layers, which in turn require an irrotational correction 
to the interior flow. By partially solving the appropriate boundary-layer equations 
analytically, the small viscous change in the potential flow may be calculated by 
modifying the boundary conditions a t  the surface. Thus viscous effects are accounted 
for by the novel means of modifying the pressure boundary condition a t  the free 
surface. This idea is developed in 94 and long computations showing the effect of 
viscosity on some nonlinear oscillations are presented in $5 .  This method of including 
viscosity can also be applied to deep-water waves and to fully three-dimensional drop 
configurations. These more general applications will be dealt with in a separate 
publication. 

The boundary-integral method could be applied equally well to a drop of one liquid 
surrounded by another of comparable density. Problems of this kind are also of 
interest in a zero-gravity or simulated zero-gravity environment. Saffren, Elleman & 
Rhim (1981) have studied oscillations of two-fluid compound drops by the classical 
Plateau method in which a drop is suspended in a third ‘host ’ liquid of the same 
density. Experiments simulating zero gravity have been carried out by Trinh & 
Wang (1982) and Trinh, Zwern & Wang (1982) by acoustically levitating a heavier 
drop in another liquid. However the effect of viscosity at the interface is much 
greater in these two-fluid problems (Miller & Scriven 1968) and cannot be accounted 
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for by the method developed in $4. For this reason we have restricted this study to 
a simple liquid drop in a dynamically inactive environment without any solid 
boundaries. 

2. Basic integral formulation 
The motion of a drop of inviscid liquid in a vacuum, or in a gas of negligible 

density, may be computed by a generalized vortex method described and developed 
in a series of papers by BMO (1980, 1982, 1984). The method, which is a boundary- 
integral method, has the advantage of requiring a numerical grid only on the surface 
of the drop, thus reducing the dimension of the problem by one. In their formulation 
the velocity potential of an irrotational flow is expressed as a surface distribution of 
dipoles. 

1 
4 4 r  - r’( 

where g(r,r’) = - 

is the velocity potential a t  a point r due to a unit source at r’, a point on the surface 
S of the drop, a/an’ is the derivative in the direction of the outer normal to the 
surface a t  r’ and p’ = p(r‘) is the dipole density per unit area. 

The potential (2.1) is discontinuous across the surface. As r tends to a point on the 
surface from inside the drop 

while as r tends to the same point from the outside 

whcre P.V. denotes the principal-value integral. From these results one sees that the 
dipole density equals the jump in potential across the surface : p = - $2. Since the 
normal derivative of $ is continuous across the surface (Kellogg 1953), the normal 
component of the velocity is continuous and therefore (2.1) represents a physically 
acceptable representation of a flow that is irrotational everywhere except a t  the 
surface. Since $ itself is discontinuous, the tangential components of the velocity 
must also be discontinuous and therefore a surface distribution of dipoles is 
equivalent to a vortex sheet. 

In  addition to determining the velocity from the gradient of a potential, one can 
also do this by using the ‘generalized Biot-Savart ’ law. The surface gradient of p, 

v s p  = u, --up (2.4) 

is a vector which is tangential to the surface. This is related to  the circulation density 
y of the vortex sheet by 

(2 .5)  y = - A x v, p. 

By introducing a vector potential A with the property 

u = V X A  (2.6) 
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one can express the vector potential in terms of the vorticity of the flow (Batchelor 
1967), which is concentrated a t  the surface, in the form 

A = - y’g(r, r’) ds’ s, (2.7) 

The usual form of the generalized Biot-Savart law is then obtained by using (2.6), 
taking the derivative inside the integral. However, by using (2.5) and ‘integrating by 
parts ’, making use of surface derivative manipulations given in Weatherburn (1927), 
(2.7) may be written 

A = - P.V. Is p‘ii‘ x Vi g(r, r’) dS’ (2.8) 

when r is a point on the surface. The above integral is used to compute A on the 
surface; then the normal component of the velocity on the surface is obtained 
from 

(2.9) 

which requires only derivatives of A along the surface. The tangential components 
of the velocity, on either side of the surface, are obtained by differentiating (2.2) or 
(2.3) along the surface. Therefore the velocity a t  the surface can be determined from 
the dipole density on the surface. 

Since the velocity of the surface can be computed, the surface can be evolved in 
time. Only the normal component of the velocity is required for this since the 
computed points can be allowed to slide along the surface arbitrarily without 
affecting the shape. However it seems natural for the present problem to associate 
the surface with the fluid inside the drop and to allow the computed point to move 
with the velocity of the fluid by means of 

(2.10) 

where u,.d is computed from (2.9) and u,.{from (2.2). It is worth mentioning that 
even though the density of the Auid outside the drop is negligible i t  is still possible 
to define a velocity there. The surface could be tracked by using the velocity just  
outside the drop or a weighted average of the velocities inside and outside, as done 
by BMO (1982). 

The additional condition required to determine the dipole density is provided by 
the pressure boundary condition. That is, the pressure difference across the interface 
must be balanced by surface tension. Since the outside pressure is zero this condition 
is 

where p ,  is the pressure on the fluid side, T is the surface-tension force per unit 
length, ii is the outward unit normal and divii is the mean curvature expressed as a 
surface divergence (Weatherburn 1927). 

p ,  = T divii, (2.11) 

The pressure can be determined from Bernoulli’s equation 

?!!+-+- u*u p = 0: 
at 2 

which is more conveniently written in terms of the material derivative 

(2.12) 

_ -  d# 
dt at at 

- -+u.v$75 = -+u.u (2.13) 
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as 

Then, using (2.11), 

dq5 U * U  p 
dt 2 p 

+- = 0. _-__ (2.14) 

(2.15) 

The potential is related to ,u by (2.2) which is an integral equation for ,u if g1 is 
known. It was pointed out by BMO (1980) that this Fredholm equation of the second 
kind may be solved by iteration. This is important in order to maintain the 
advantages of reducing the dimension of the problem by using this boundary- 
integral method. 

To solve for the shape of the drop one must solve (2.10) and (2.15) simultaneously. 
Given and the shape of the drop a t  the beginning of a time step one solves (2.2) 
for p. Using ,u one computes the vector potential on the surface and hence the normal 
component of the velocity from (2.9). The tangential components of velocity are then 
determined by differentiating q51 along the surface. Hence u, may be computed at  
each nodal point on the surface and therefore the right-hand sides of both (2.10) and 
(2.15) may be computed at each point. The differential equations are then used to get 
new nodal positions and new q51 values a short time later. 

This strategy is a little simpler than the one used by BMO (1980). Instead of 
updating q51 directly, they differentiate the equivalent of (2.2) with respect to time, 
generating an integral equation for d,u/dt. This requires properly differentiating the 
integral, accounting for the fact that the interface shape depends on time. The 
resulting integral equation is the same as (2.2) except for the non-homogeneous term. 
This is solved for d,u/dt which is then used to update p. 

The principal-value integrals for A and 9, may be ‘desingularized’ by using the 
known principal-value integrals (Jaswon & Symm 1977) 

Thus (2.2) may be written 

and (2.8) may be written r 

A = - (p’-p)lixV;g(r,r’)dS’. 
J S  

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The availability of (2.17) to desingularize (2.8) in this way is the chief reason for using 
(2.8) instead of the more usual form of the Biot-Savart integral. 

The equations have been put in dimensionless form throughout the remainder of 
this paper by using a characteristic length lo, velocity vo and time lo/vo. The equations 
then have identical form, except in (2.15), where T / p  is replaced by the dimensionless 
combination T’ = T/pvi  1,. The length 1, was taken as a characteristic radius of the 
drop and T was set equal to 8, making vo = (2T/pZ,);. 

While the formulation has described arbitrary three-dimensional drops, compu- 
tations have not yet reached this level of generality. All of the computations to be 
presented here are restricted to axially symmetric shapes such as that shown in figure 
1,  where a consistent cylindrical coordinate system is depicted. Here z and r are axial 
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FIGURE 1 .  Axially symmetric coordinate system. 

and radial variables, s is arclength along the intersection of a meridian plane with the 
drop, measured from the right-hand end as indicated. d(s) aAnd f ( s )  are local normal 
and tangent vectors. The normal to the meridian plane 8 is directed out of the 
page. 

For axially symmetric drops the vector potential only has a component in the d- 
direction, A = A,$, and the normal and tangential velocity components are given 

(2.20) 
ar A ,  

by 
u, . fi = r-1__ 

as 

and (2.21) 

In the surface integrals defining A and $1 the integrations over the angular 
variable may be carried out, giving line integrals of the form 

A ,  = - ( p ( S ’ )  -P(s) )  KA(s, 8’) ds’, (2.22) 

$1 = p + ( P ( 4  -&9) K&’ 8’) ds’ (2.23) 

where the kernels K A  and K ,  are complicated singular functions that depend on 
elliptic integrals. These were computed using the accurate approximation formulae 
given in Abramowitz & Stegun (1972). Nodes were numbered from 1 to N with 1 a t  
the right end and N at the left. A Lagrangian integration variable 6 was introduced 
with fixed identity a t  each of the nodes. It was convenient to let 6 vary from 1 to N ,  
taking the value j a t  the j t h  node. A change of variables from s’ to  c puts the 
integrals in the form =-Il (pu( f ) -~u(6 ) )KA(6 ,6 ’ )h ’d5‘ ,  (2.24) 

s 
s 

N 

where (2.25) 

cancels out of the integrands because the kernels are linear in the components of the 
tangent vector, i.e. t ,  = az/as = h-1i3z/a6. Quantities like &/at and &/a6 were 
computed a t  the nodes from the nodal values of z and r by using a fourth-order- 
accurate Pad6 approximate difference formula. The nodes were equally spaced in the 
6-variable. It was not necessary to  calculate the physical distance between nodes 
along the curve except for plotting purposes. 
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Because the elliptic integrals are more rapidly varying between the nodes, 
especially near the poles, it was necessary (following the suggestion of BMO 1984) to 
insert additional points between the nodal points. Therefore it was necessary to 
interpolate for the values of z ,  r ,  and p at the inserted points. Since the derivatives 
of these quantities are already known a t  the nodes an interpolation formula was used 
that fits a cubic polynomial in 5 to the values of these functions and their derivatives 
a t  the end points of a nodal interval. This interpolation is fourth-order accurate. The 
integrals were then approximated by using the midpoint formula between the 
equally spaced inserted points. 

Thc integrals are thus evaluated as functions of the coordinate positions of the 
nodes and the values of ,u at  the nodes. The velocities at the nodes are then obtained 
from (2.20) and (2.21) using the Pad6 approximate first-derivative formula. The 
surface-tension term requires second derivatives of the coordinate positions. These 
were evaluated using a fourth-order-accurate Pad6 approximate second-derivative 
formula. Finally values of z, r and a t  the nodes were updated by using (2.10) and 
(2.15) with fourth-order Runge-Kutta time advancement. It usually required about 
ten iterations to obtain ,u to an accuracy of 

We observe a loss of accuracy of the velocity computation near the poles, but this 
is not as severe a loss as that reported by de Bernadinis & Moore (1985) who used the 
Van der Vooren approach to  desingularize Biot-Savart integrals. We repeated their 
test computation with the known solution for the surface velocity of a suddenly 
accelerated sphere. For the same number of nodes our computation, with four added 
integration points between nodes, is not as accurate as theirs (for this test problem) 
because we start with the known dipole strength, do an integration and then 
differentiate to get the velocity, whereas they start with the known circulation 
density and do not have a differentiation after the integration. With 100 nodes their 
accuracy deteriorates rapidly from about lo-' to near the poles, while ours 
varies from about to Despite the extra differentiation, our accuracy near 
the poles is the same as theirs. That is, our loss of accuracy near the poles is not as 
extreme. Further, as the number of added points between nodes is increased, the loss 
of accuracy near the poles decreases. We conclude that the loss of accuracy is caused 
by the rapid variation of the elliptic integrals between nodes near the poles. 

It often happens that after a number of time steps the nodes become bunched 
together over part of the drop. This can lead to numerical instabilities (the closer 
spacing requires a smaller time step to keep the fourth-order Runge-Kutta 
algorithm stable) and has been prevented by remeshing the nodes so that they are 
approximately evenly spaced. The required interpolation for new nodal positions and 
p-values (and interpolated values of az/aE and ay/a() was accomplished by using 
cubic splines. Remeshing was normally done after every time step. 

The local energy and volume were monitored to  keep track of overall accuracy. 
The kinetic energy was computed from the classical formula (Lamb 1932, $44) 

Kinetic Energy E,  = = Js ri.uq5,dS, 
ipu; 1: 

and the surface energy from 

Surface Energy 
E ,  = = 2T'S, 

+flu; 1; 

(2.26) 

(2.27) 

where S is the surface area and T ( =  +) is the dimensionless surface tension 
introduced earlier. 
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3. Preliminary computations : instabilities 

the Rayleigh shape initial condition 
We have done test computations with two kinds of single-mode initial conditions : 

r =  l+e,P,(cos@), $ = O ;  

or the impulsive initial condition 

r = 1, q5 = q5,Pn(cos@), 

which can be thought of as applying an impulsive pressure a t  the initial time. The 
parameter en is the initial axial displacement of the pole ends of the drop, a quantity 
that we refer to as amplitude. We have done computations with moderate to large 
values of en or q5n where mode coupling will occur. For small en or 9, with n not too 
large the computed solutions were found to consist of sinusoidal oscillations of the 
Legendre-polynomial mode shape as expected. However for larger amplitudes 
instabilities developed. For example with initial conditions r = 1, q5 = 0.6P2 expo- 
nentially growing waves of a zigzag mode with wavelength twice the nodal spacing 
(24 waves) as shown in figure 2(a) appear after a relatively short time. The quantity 
shown is the circulation density (the negative of the derivative of the dipole density, 
i.e. the difference in velocity) along the drop surface. Growing waves also appear on 
the surface, but they are always much less evident than these. Similar instabilities 
have been reported by Longuet-Higgins & Cokelet (1976), BMO (1982) and by Pullin 
(1982). 

Moore ( 1982) analysed the instabilities for two-dimensional interfacial waves and 
concluded that with his numerical scheme the system is linearly stable, the 
instability being caused by a nonlinear interaction between modes. These appeared 
to be a threshold amplitude below which the system was stable. The modal 
frequencies a t  first increased with mode number following the linear theory then, 
distorted by the numerical scheme, decreased to zero a t  a mode number equal to the 
number of nodes, presenting the possibility of resonance between the high modes and 
the low modes. 

The present system with surface tension and axial symmetry and some algorithm 
difference behaves in a different manner. A number of low-amplitude single-mode 
computations with initial conditions given by (3.1) have been made with N = 101. 
The mode P, has n zero crossings and in waves between the poles. Thus Ploo has 50 
waves and represents 24 waves. We find that the modal frequency increases 
monotonically with n, levelling off a t  the highest mode number, 100. This difference 
from Moore’s observation is probably due to surface tension. The 24 and 34 waves 
are unstable when directly excited through PI,, and P,, at any amplitude. Because 
of the small number of nodes available per wave these short-wave modes appear 
about the same, with the same period (about 0.02), growth rate (about 25% per 
cycle) and the same characteristic unstable mode shape. The latter, shown in figure 
2(b), looks similar to the instability shown in figure 2(a )  with mostly 24 and 34 
zigzags and much higher amplitude near the poles. (High-order Legendre polynomials 
are much larger near the poles, by a factor of 12 for P,,,). These may be the same 
unstable mode since it is probably impossible to isolate a stable 34 wave without 
strongly exciting the 24 instability. The 44 wave excited by P5, is also unstable with 
period 0.025 and growth rate about 7 YO per cycle. The growing mode looks like the 
function P5, with 25 irregular 44 zigzag waves. After about 10 cycles faster growing 
24 zigzags show up near the poles. 
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FIQURE 2. Circulation density showing 24 instability: (a) as it appears on a second-mode 
oscillation, (b )  generated by Ploo. 

Typical of lower modes, Pt5 appears to be stable for 10 or 12 cycles but then 
becomes unstable when the higher frequency unstable mode described above 
becomes apparent. There is no threshold amplitude. Nearly identical results occur for 
initial amplitudes of I n  this case it appears that the unstable 
zigzag mode was present at low amplitude in the initial discretization, in the same 
proportion relative to the initial amplitude, and only became evident when it had 
outgrown the amplitude of the stable 25th mode. 

These computations with the 25th mode were done with a time step At = 0.002. As 
we increase At we find stability in the range 0.004 > At > 0.0085. This is a 
consequence of the favourable stabilizing effect of the fourth-order Runge-Kutta 
time-stepping algorithm which is able to compensate for the 25% per cycle growth 
rate of the zigzag mode in this range. 

loe5, and 
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1.0 

-l.O - 1.5 i 

2 1  

0 2 4  6 8 10 0 2  4 6 8 10 
Time Time 

FIGURE 3. Second-mode oscillations with initial conditions. 4 = 0.6P2, r = 1 ; N = 101, At = 0,005, 
Dl = 0.01. ( a )  Amplitude of right-hand polar point, z(l)-zo(l). ( b )  Energy. The upper oscillatory 
trace is the kinetic energy, the lower oscillatory trace is potential energy (surface energy) with 
arbitrarily shifted ordinate. The straight line is the total energy. 

We conclude that there is an accuracy problem. Except in the narrow stable 
window the instability will always be seen eventually because of initial error or 
round-off error. It can also occur because of nonlinear transfer of energy to higher 
modes, not by direct resonance with a lower mode but perhaps by other combinations 
of mode coupling. However, the basic cause of the instability is still not known. 

To combat this problem Longuet-Higgins & Cokelet (1976) used five-point 
numerical smoothing of the interface shape. Dommermuth & Yue (1987), using an 
integral formulation similar to that of Longuet-Higgins & Cokelet have found 
stability by remeshing alone. BMO (1982) solved this problem by improving the 
accuracy of their algorithms and limiting the length of their computations. Pullin 
(1982) has smoothed both the surface shape and the surface potential. Kraszny 
(1986) has used a form of smoothing that involves a new filtering technique. We have 
smoothed in the following manner. I n  addition to  remeshing, which is a form of 
smoothing, we have directly smoothed the surface potential after each time step by 
using one smoothing step derived from 

(3.3) 

using a five-point formula for the fourth derivative and an Euler time step. This has 
the same effect as placing the fourth derivative on the right-hand side of (2.15) and 
causes damping of the higher modes while having a minimal effect on the lower 
modes. Specifically, we smoothed by replacing the values of the potential, q5*, by 

#j +Di(#j+2-4#j+i +6#j-4#j-i +#j-J- (3.4) 

When applied to  the 25th-mode test case, with an appropriate value of the 
smoothing parameter D, = 0.01, the stable window is enlarged to 0 < At < 0.085. 
There is not much change in the upper limit because i t  was already very close to  the 
Runge-Kutta stability limit. 
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The nonlinear case attempted above ( r  = 1, $2 = 0.6P2) was rerun with D,  = 0.01 
and N = 101 with the results shown in figure 3 (a,  b) .  This case was chosen to compare 
with one computed by Benner (1983) by a finite-element method and appears to give 
identical results. (In our units the time is half of Benner’s and the potential is 
double.) The lower curve in figure 3 (b )  is the potential energy. It has been arbitrarily 
shifted so that it starts from -2. The total energy (the straight line) is the sum of 
the kinetic energy and the shifted potential energy. The energy loss due to smoothing 
is 0.0024 compared to the maximum kinetic energy of 1.8 or about 0.05% loss per 
cycle. This same case was run with N = 61, with 0.15 YO loss per cycle but otherwise 
identical results. It is of interest that this test case with N = 101 and no smoothing 
runs stably with At = 0.0065 and At = 0.0075 which are within the stable window 
established for the 25th-mode linear calculations. In  these cases the energy error was 
less than While it would be desirable to eliminate the need for smoothing by 
operating in the stable window it is often necessary to have At smaller than the 
allowed values for accuracy. 

More extreme examples of this type have been computed to show the possibilities 
of this method. Initial conditions were chosen as r = 1 ,  $ = $2 P2 with larger values 
of $2. This initial condition can be thought of as an impulsive pressure applied 
initially in such a way as to drive the poles of the drop in opposite directions. This 
could be approximated experimentally by applying a large axial electric field to a 
conducting drop for a short time. With a large impulse the drop becomes very 
elongated and breaks into several pieces. In  figure 4 several views of this process are 
shown, together with the circulation density along the surface starting from the 
right-hand end and following along the upper half-meridian plane. Figure 4(a) shows 
a sequence with the carefully selected value $2 = 0.86 for which the drop will break 
in half. The first view shows the drop near full extension and the last just before the 
computation fails when the throat contracts to zero. (This computation could be 
continued by reconnecting the ends as was done by Fromm 1984 in the pinch-off of 
a drop-on-demand jet.) As the droplet begins to pinch off, strong spikes of vorticity 
develop at each side of the throat consistent with the observed steepening of the 
attachment between the throat and the droplet where the curvature becomes large. 
The sign of the vorticity (because of the way it  is plotted, the positive spike is on the 
right-hand droplet) would cause these vortex rings to move away from each other in 
the absence of other induced-velocity contributions from more distant vorticity. 
These local induced velocities are such as to remove fluid from the throat. We cannot 
tell whether the drops would actually separate after pinch-off since the ends of the 
drop actually appear to be moving toward each other. When $2 is slightly smaller 
than 0.86 (we have computed with 0.85) the throat rebounds and the drop oscillates. 
When q52 is slightly greater than 0.86 (we have used values as close as 0.87) the drop 
appears to break into three parts with a very small central satellite. As $2 continues 
to increase the satellite increases in size until it becomes the dominant part. Figure 
4 (b)  shows a sequence for $2 = 1 .0, and figure 4 ( c )  shows one for $2 = 1.3. Notice that 
the vorticity spikes continue to form on the inner portions of the outer drops, but 
none appear on the incipient satellite drop. We have computed with $2 as large as 2.5, 
in which case the drop becomes stretched to a length-to-width ratio of about 20 
before forming relatively small end drops. If these were removed by reconnection, 
would secondary end drops begin to pinch off 2 
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FIGURE 4. Drop breakup from initial impulse. Initial conditions are: (a) q5 = O.8f.jP,: r = 1 ,  ( b )  4 = 
1.0P2,r = 1 ; (c) q5 = 1.3P2,r = 1. N = 101, At = 0.005, D, = 0.01. Drop shapes (the left-hand 
traces) are shown near the state of maximum extension (a) ,  just before the computation fails when 
the droplet throats pinch to  zero (c), and a t  an intermediate time ( b ) .  The right-hand traces are the 
circulation density versus normalized arclength along the drop surface measured from the right- 
hand end of the drop. When the parameter is smaller than 0.86 the drop oscillates. When it is 
greater than this value a satellite drop forms. 
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4. Weak viscous effects 
The method developed in $2 is based on inviscid analysis and cannot be used to 

study the damping effects of viscosity on drop oscillations. In  this section a new 
method is presented which introduces high-Reynolds-number viscous effects by 
modifying the boundary conditions a t  the free surface. It turns out that the viscous 
effects are not always strong enough to damp the instabilities and, in fact, sometimes 
trigger the instability, so smoothing must still be used. 

Lamb (1932, $349) presents a linearized theory for viscous damping of deep-water 
waves. He shows that viscosity produces a thin, weak vortical layer a t  the free 
surface. This is distinct from the potential vortex sheet, which remains sharp, and is 
not the same as a diEusive thickening of the vortex sheet. The vortical layer occurs 
because the irrotational shear stress is not zero at  the free surface (unless the 
viscosity is identically zero). This small irrotational shear stress drags a thin viscous 
layer of rotational fluid along, making the small modification to the velocity field 
that is required in order to satisfy the zero-shear-stress boundary condition. A key 
point which makes the analysis below possible is that the vorticity a t  the free surface 
is completely determined by the irrotational part of the shear stress. This vortical 
layer is thin. The flow remains irrotational (even though affected by viscosity) 
throughout the bulk of the fluid. Lamb (1932) and Batchelor (1967) point out that 
the dissipation is mainly in the irrotational part of the flow, not in the vortical layer 
as would be the case a t  a solid boundary or at an interface between two immiscible 
liquids with comparable viscosities. Moore (1962) used some of these ideas in 
studying the boundary layer on the outside of a spherical gas bubble. Miksis, 
Vanden-Broek & Keller (1982) applied them to the flow around a non-spherical 
bubble neglecting the vortical layer and the pressure drop across it in the normal 
stress boundary condition. In general this pressure correction is comparable to the 
normal stress viscous correction (which can be computed from the potential flow), 
but this was less important in their particular problem. Hasegawa & Yamashita 
(1986), following Miksis et aZ., made the same approximation in a different kind of 
problem where the neglected pressure drop is probably important. 

In  this section a nonlinear version of these results will be presented for axially 
symmetric flow. By solving for the vortical layer enough information can be found 
to  include weak viscous effects as a boundary condition a t  the free surface of an 
otherwise irotational flow. 

Consider an incompressible fluid with a free surface which separates it from a 
vacuum (or dynamically inactive fluid). The fluid velocity V must satisfy 

v -  v =  0, (4.1) 

(4.2) 
av 
at 
-+ V-VU = -Vp+R,'V2V. 

The Navier-Stokes equations are written here in the dimensionless form introduced 
in $2 in which the scaling is such that p is the pressure divided by pvi and Re = 
Z,v,/v is a Reynolds number. As a point of reference a drop of water in air with 
radius 2 cm has Re = 2400 in our units. 

For axially symmetric flow V lies in a meridian plane. The boundary conditions a t  
the free surface are then : 

(i) shear stress is zero: 

i. T . i  2R;'t .D.f i  = 0, (4.3) 
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(ii) normal stress is balanced by surface tension: 

6.T.A -p+2Rt,'fi.D.fi = -TdivA (4.4) 

where T'( = $) is the dimensionless surface tension inbroduced before. 
Let the velocity field be decomposed into the sum of irrotational and vortical 

parts, by 
V = u + U ,  (4.5) 

where u = V$, 
U = V x A , ,  V - A , = O .  

For axially symmetric flow A, = A,8.  Since the irrotational part can also be 
expressed as the curl of a vector potential, i t  will be assumed for uniqueness that 
A ,  is zero in the interior part of the flow. Then the irrotational part of the flow will 
be entirely determined by the potential induced by the vortex sheet. From the 
continuity equation Vz$ = 0 and by a vector identity the vorticity is given by 
o = -V2A,.  The scalar A ,  is an axially symmetric stream function. The excess 
flux (relative to the potential flow) in the layer is 27trA,. 

Similarly the pressure is decomposed as 

where the first two terms on the right give the pressure associated with the 
irrotational part of the flow, and P is the excess pressure required for the vortical 
flow. Without loss of generality P may be assumed to be zero in the interior part of 
the flow. Substituting (4.5) and (4.8) into the Navier-Stokes equations gives 

v*u= 0, (4.9) 

(4.10) E+ U.Vu+u-VU+ U.VU = -VP+R;'V2U. 
at 

We wish to show, by using standard boundary-layer estimates, that  U is small and 
confined to a thin layer along the surface. Introduce a local orthogonal coordinate 
system in the surface layer with 5 a coordinate in the direction of ii (so that 5 is 
negative in the fluid), s the arclength along the surface in the direction of {and with 
the third coordinate the azimuthal angle. 

Decomposing the shear strains into rotational and irrotational parts, and noting 
that the rate-of-strain tensor for the irrotational part is Vu, the shear-stress 
boundary condition becomes 

i. Vu.h +$({a vu. ii + i i .  v u .  i) = 0. (4.11) 

Assuming that' the vortical layer has thickness of order S, with S 4 1, and that the 
scale of variation along the layer is of order one, the vortical terms in (4.11) can be 
estimated as 

aut (4.12) =ag' 
i. V U - f i  + i i .  vu. t̂  
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(4.13) 

Since i.Vu-n^ is of order one this implies that U, is of order S and, from (4.7), 
A ,  = O(S2).  Furthermore, from the continuity equation, U, = O(S2).  

With these estimates of Ut, U, and u,  and neglecting some small viscous terms and 
U - V U ,  which is of order a', (4.10) may be written 

(4.14) 

where D/Dt = a/at+u.V is a temporary notation. The tangential and normal 
components of this equation are 

and 

(4.15) 

(4.16) 

In (4.15), the first term on the left is of order S, even though the individual terms in 
this combination are larger than this. It is easy to  see that if u has a component 
perpendicular to the surface then u.VU, = O(1); however since this combination of 
terms is a material derivative following the potential flow the rapidly varying spatial 
variation of U, must be cancelled by an equally rapid temporal variation. The second 
term on the left in (4.15) is of order a2 as is the part of the third term that depends 
on U,. Since the viscous term is of order (SRJ1 it follows that 

6 = R-t e j  (4.17) 

as in boundary layers on solid surfaces and in agreement with Lamb and Moore. 
Inspection of (4.16) shows that aP/a< = O(6) and, since P is zero in the interior, 

Y = 0(a2) in the vortical layer and therefore aP/as may be neglected in (4.15), which 
simplifies to 

(4.18) 

Using U, = -aAz/ac,  from (4.7), in (4.18) and the fact that u is slowly varying in the 
vortical layer, each of the terms may be written as derivatives with respect to 5, 
i.e. 

(4.19) 
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(4.20) 

Upon using f i . vu . f i  = - t - v u . i - u . f / r ,  (4.21) 

which follows from divu = 0, (4.18) may be written 

= O(S2).  (4.22) a(DA,/Dt + 2A, VU - f +  u * f A , / r  + R,' aU,/aC) 
ac 

Integrating this into the interior where A ,  is zero gives 

DA au, 2 = - ( 2 i .  vu.  ;+ u * f / T )  A ,  -R,1-+ O(83). 
Dt ac 

(4.23) 

If we were to substitute U, = -aA,/aC into the viscous term this would be a partial 
differential equation for A ,  in the layer. However it is not necessary to solve this, 
because by evaluating it at the boundary and using the boundary condition (4.13) in 
place of the viscous term we find 

2- - - ( 2 i .  v u  - i+ u * f / T )  A ,  + 2R,1 t^. v u  . f i  + 0(83), DA 
Dt 

(4.24) 

which is a differential equation for A ,  on the surface. This equation, giving the excess 
flux per unit length of circumference, is similar to von KBrman's momentum-integral 
equation. The first term on the right includes the straining effect of the potential 
flow. If A ,  has a small ripple on it, a compressive strain will cause the ripple to 
amplify. (This will be seen later to cause a difficulty.) The second term is the potential- 
flow shear stress which drives the layer. 

It rcmains to calculate the excess pressure at the surface for use in the pressure 
boundary condition. In (4.16) we estimate the first term on the left and the viscous 
term to be O ( P )  while the rest of the terms are O(6),  so 

Dfi 1 _ -  - u--- U . V U . f i + O ( 8 ~ ) ,  ap 
ac Dt 

Dfi 
Dt 

= u t t . - -  u, f. v u .  fi  + 0(8,) ,  

Dt 

- - 
ac 

(4.25) 

Therefore, integrating this into the interior where P and A ,  are zero, we find 

(4.26) 

In particular, this gives the excess pressure on the surface itself. 
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The pressure boundary condition (4.4) a t  the free surface, with pressure given by 

-++-P+22R;1ri.Vu-ii = -T’divri, (4.27) 

(4.8), is 
a+ U - u  
at 2 

where P is given by (4.26) with A ,  to be determined by integrating (4.24). 
The motion of points on the surface should be determined from 

dr  
- = u+ U,  
dt 

(4.28) 

with U = V x A .  However, while U is not completely known, its normal component 
can be determined from values of A,  on the surface by using 

(4.29) 

But this is enough, since the evolution of a surface is completely determined by the 
normal component of the velocity. Therefore we shall use 

dr  
dt 
- = u+U,ri (4.30) 

instead of (4.28) to evolve the surface shape. 
It is desirable, however, that the time derivative in (4.24) follow the same path as 

the boundary points. Since U, and A ,  are O(S2) the left-hand side of (4.24) can be 
replaced by 

aA2 dA 
-+(u+U,ri) .VA,  = 2. 
at dt 

(4.31) 

Then (4.24) may be rewritten as 

5 = - (2f.  Vu. f +  u -  ? / r )  A ,  + 2R;’ f-Vu.ri + 0(S3). (4.32) 
dt 

Similarly, using this definition of dldt and (4.21), (4.27) becomes 

(4.33) 

Equation (4.26) for P may also be simplified. First note that in t)he second term 
f.Vu = a(dr/dt)/as, neglecting a small term. Changing to  Lagrangian variables, 
alas = h-l a/a<, the order of differentiations may be interchanged to get 

(4.34) 

Therefore 
(4.35) 
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Then replacing D/Dt by d/dt the excess pressure on the surface becomes 

P = 2 A , i * V ~ . f i .  (4.36) 

The results are summarized below. 
Summary of viscous boundary conditions : 

dr  1 arA, - = u + U , i i ,  u =---- 
dt r a s ’  

5 = - (2f- Vu. i+ u - ?/r)  A ,  + 2Ri1 f. Vu , ii, 
dt 

(4.37) 

(4.38) 

- d#J = (u+ u, 6 ) .  (u+ u, ii)/2+2A2 i .Vu.ii 
dt 

+ 2R;l(f.Vu. f+ us+//.) - T’ div ii. (4.39) 

This set of equations replaces (2.10) and (2.15) as the conditions to determine the 
shape of the drop and the dipole distribution when weak viscous effects are included. 
The corrections to the flow are of order Rl1  and we have neglected terms of order 
Rig. This should be compared with viscous corrections of order R,: for flows with 
solid boundaries or two-fluid interfaces. 

In  physical terms, we have assumed that the thickness of the vortical layer, which 
is O(R;$), is much smaller than the characteristic length of the motion, which has 
been taken to be unity. If the motion is perceived as the superposition of a large 
number of oscillating modes the characteristic length could actually be as small as 
the shortest resolved wavelength. When N = 101 the 50th mode, with 4 nodes per 
wavelength, is about the limit we can hope to resolve. This has wavelength of about 
0.12 units. When Re = 2000, which has been used for a number of computations, the 
thickness of the vortical layer is about 0.02. So for this worst possible case the 
condition is more than just marginally satisfied. 

The viscous terms have been used for integrations of a 25th-mode test case. The 
results for small amplitude ( are shown in figure 5 (a) where decaying oscillations 
for Re = 1000 are compared to a linearized result from Lamb (1932, 9355), in which 
the amplitude of the nth mode has a decay factor exp ( - t / 7 )  with 7 = Re/[(%- 1) 
(2n+ l)] in our units. The comparison is excellent, as i t  is for Reynolds numbers even 
as low as 100 where the amplitude decays to  zero in about 4 cycles, which is too small 
for either Lamb’s theory or the present equivalent results to be applicable. 

A difficulty occurs at higher amplitude. The zigzag instability recurs when the 
amplitude is 0.02, even when smoothing is used. That is, the viscous term causes the 
instability to occur in a case that was stable before. This has been traced to the 
(nonlinear) straining term in (4.38). When this term is removed no instability is seen. 
It appears that straining by the potential flow can amplify a small zigzag disturbance 
enough during the compressive part of a cycle that the instability can run to 
excessively high amplitudes before the stabilizing stretching part of the cycle can 
counter the growth. This problem was solved by smoothing A ,  in the same manner 
as for the surface potential. Again this has the same effect as having a fourth- 
derivative damping term on the right-hand side of (4.38). This compensates (or 
overcompensates) for the neglected second-derivative viscous term. (That second 
derivative is negligible when wavelengths are long compared with the thickness of 
the vortical layer, but we did not count on non-physical 24 waves.) 
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F~GURE 5 .  Test cases with the 25th mode showing the effect of viscosity. The initial conditions are 
of the form q5 = 0, r = 1 +eP2&. The quantity plotted is normalized amplitude, (z ( l ) -z , , ( l ) ) /~ ;  
N = 101, At = 0.005, R, = 1000. ( a )  e = 0.001, ( b )  c = 0.02, D, = D, = 0.01. 

A test with the 25th mode, with Re = 1000, amplitude = 0.02 and with both 
smoothing factors (the smoothing parameter for A ,  is called D,) equal to 0.01 is 
shown in figure 5 ( b ) .  Notice that the oscillations decay somewhat faster than the 
linear theory would predict. This is almost entirely due to  D, as has been verified by 
comparing with computations with D, = 0 and D, = 0.01. 

An alternative approach is to neglect the destabilizing straining term in (4.38) 

2- - u - r" A.Jr -+ 2R;' t̂ . Wu- f i  (4.40) dA 
using 

dt 

instead. This can be justified for problems with moderate nonlinear effects. The 
modified equation can be used with D, equal to zero, i.e. the viscous terms now 
stabilize the zigzag instability. We rarely use the equations this way. 

5. Nonlinear drop oscillations 
I n  this section we present the results of some long computations with fourth- and 

fifth-mode initial conditions of type (3.1) with weak viscous effects. We have selected 
these modes for two reasons. First there are interesting resonant couplings between 
these modes and others. Secondly, in order to show the effect of small viscosity i t  is 
necessary to compute a large number of periods. With fourth-order Runge-Kutta 
and N = 101 we are limited to At smaller than 0.0085 for stability reasons (we usually 
use At = 0.005). 

5.1. Fourth-mode results 
Figure 6 shows typical fourth-mode shapes for about one period computed from 
initial conditions r = 1 +0.3P4, q5 = 0. Figure 7 shows the amplitude and energy 
results when Re = 2000 and D,  = D, = 0.01. I n  figure 7 (a)  it can be seen that every 
third amplitude peak is lower than the other two. At first we thought this was a 
subharmonic resonance caused by the fact that the second mode has a natural 
frequency one-third that of the fourth mode (w! = 2 ,  u: = 6), however the mechanism 
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FIGURE 7 Fourth-mode oscillations with same initial conditions as in figure 6, and with R, = 2000 
and 112 = 0.01. ( a )  Kormalized amplitude of the right end. The amplification factor from the linear 
theory is also shown ( h )  The upper oscillation is kinetic energy, the lower one is potential energy 
with ordinate shifted to start from zero. The non-oscillating curve is the total energy, not a 
theoretical result. It would be a horizontal curve through zero if there were no viscosity and no 
errors due to smoothing. (c) The amplitude of the fourth mode computed from the drop shape by 
modal decomposition. 

for this is not clear. In order to  explore this and other features in more detail we have 
decomposed the drop shape into its linear modes according to 

m 

r = 1 + c C,(t) P,(cos O ) ,  (5.1) 
j= 1 

using orthogonality of the Legendre polynomiaIs to directly compute 

C, = (%-ti) I:, (r-l)P,(cosO)d cost9 (5 .2 )  

by integrating the computed function r(O, t). Since P,(@ = 0) = 1 this decomposition 

has the property W 

Amplitude of the right end = C G,( t ) ,  (5 .3)  
j=1 

that is, the quantity plotted in figure 7 ( a )  is the superposition of all the modal 
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amplitudes. In  figure 7 (c) the fourth-mode amplitude C, is shown a t  the same scale 
as in figure 7(a), and in figure 8 all the even modes up to the eighteenth are shown 
a t  an enlarged scale. All the modal amplitudes have been divided by the initial 
amplitude of the fourth mode. 

Tsamopoulos & Brown (1983) have studied non-viscous drop oscillations 
analytically by expanding to  second order in amplitude. The problem they solve is 
a little different from our initial-value problem. They look for strictly periodic 
oscillations in which the amplitude is defined as the coefficient of P,(cos 0) cos w, t 
(other terms proportional to P, are time orthogonal to cosw,t). They do this for 
n = 2 ,3 ,4 .  For the fourth mode they find the result 

(5.4) i 
r = 1 + eP4 cos T + +."( - 0.222 cos2 T 

+ 1.290(1-0.219 C O S ~ T )  P2+0.463(1-0.974 C O S ~ T )  P, 
+0.385(1-4.311 C O S ~ T )  P6+0.598(1 -0.299 COS~T)P,), 

T = w 4 t ,  W,  =w;(l-l.457e2+O(e4)), 
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in which only the zeroth, second, fourth, sixth, and eighth modes are excited at  
second order and have modal amplitudes that oscillate with twice the primary 
frequency. This is quite different from what we observe. For instance the second 
mode in figure 8 has a strong component that oscillates with the natural frequency 
of the second mode. The smaller ripple superimposed on this is at double the fourth- 
mode frequency. The difference is caused by the difference in the problems. We will 
return to their problem later in a separate subsection. 

I n  our case the second-mode excitation appears to be caused by second-order 
quadratic coupling with the fundamental fourth mode. The equation for the second 
mode, in an intuitive physical picture, would be like a linear oscillator with natural 
frequency w2, with a driving term that is the square of the fourth mode. The Fourier 
decomposition of the driving term has a contribution that is sinusoidal a t  twice the 
fourth-mode frequency and it also has a constant contribution. The constant driving- 
force part has a solution proportional to c2( 1 - cos w2 t )  (it has to be initially zero with 
zero derivative). This is a second-mode oscillation which is offset from zero amplitude 
as observed in the figure. It is this second mode that causes every third peak to be 
lower in figure 7 ( a )  and it  is not caused by subharmonic resonance. The fact that  the 
frequencies are related by a factor of three is incidental except as i t  effects the 
appearance of the figure. 

The zeroth mode is excited a t  twice the frequency of the fourth mode, as is the 
sixth mode. However there also appears to be a near-harmonic resonance in the sixth 
mode with its characteristic beats. The linearized natural frequency of the sixth 
mode is w: = 10.95, which is noticeably less than double the linearized frequency of 
the fourth mode. However, because the mode frequency softens with amplitude, 
w p  x 5.46 (obtained by counting the peaks in figure 7 c )  is very nearly half of w:. 
Therefore there appears to be an opportunity for second-order resonant coupling 
between the fourth and sixth modes through the quadratic nonlinearities. (However 
the presence of the beats means that the frequencies are not quite close enough for 
resonance.) Also we note that the deep troughs in this figure are a t  the fourth-mode 
frequency, indicating that there is superposition of a term resulting from third-order 
coupling through these nonlinearities. 

The basic frequency seen in the eighth mode is nearly its linearized frequency 
(wa = 1 6 . 0 , ~ :  = 16.73). It appears to be excited by the same mechanism acting on 
the second mode as is suggested by the characteristic offset from zero in the figure ; 
however the presence of beats indicates near-resonant coupling in addition. The 
deeper troughs in the eighth-mode figure coincide with the troughs of the fourth 
mode. A check shows that the eighth mode has about three times the frequency of 
the fourth. Therefore we think this is another situation where third-order quadratic 
coupling is important, probably involving the sixth mode also. 

The tenth-mode frequency is near its linear frequency and is close to 4w4. Therefore 
with the apparent beat this looks like third-order or fourth-order near-quadratic 
resonance. The remaining modes are all smaller than those discussed above. Each 
appears to have a component near its linearized frequency which damps out due to 
viscous effects (more rapidly for the higher modes). 

A computation with zero viscosity and D, = 0.01 was made for comparison and to 
isolate the effect of the D, smoothing coefficient. The results are not shown. It was 
found that D, = 0.01 caused an energy loss of about 5% of the maximum kinetic 
energy in this fairly long run. If this loss is representative of the loss in the viscous 
run as well, then the smoothing loss is only about 10% of the real viscous loss. The 
smoothing loss in amplitude is not noticeable at all. By counting the peaks in the 
non-viscous-amplitude figure we find the angular frequency is w4 = 5.26, a little 
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lower than for the viscous case and lower than the linear value, wi = 6, as expected. 
The frequency formula given by Tsamopoulos & Brown (1983) yields a comparable 
value, w4 = 5.21. More direct comparison with their work is pursued below. 

Computations with larger amplitudes have also been attempted. When the initial 
conditions are r = 1 +0.35P4, $3 = 0 we find results similar to those already shown, 
with the second mode a little more pronounced. When the amplitude is as large as 
0.4 the computations fail. Figure 9 shows the drop shape after about five oscillations, 
just before failure. This occurs when the sixth-mode amplitude is near a maximum 
while the fourth mode is approaching a minimum. The computation fails when the 
sides of the small droplets touch the main body. 

5.2.  Direct comparison with Tsamopoulos & Brown 
In order to compare more directly to Tsamopoulos & Brown's fourth-mode results we 
have computed several non-viscous cases using their result (5.4) to provide the 
proper initial conditions for a strictly periodic solution. The appropriate initial 
conditions are 

} (5.5) 
T = 1 + ( G + 0.006e2) P4 + E'( - 0.1 1 1 + 0.504P. - 0.638P6 + 0.2 lop,), 

$3 = 0. 

We have done computations with e = 0.05, c = 0.1 and e = 0.2 with results for modal 
amplitudes that are essentially within the second-order accuracy of their theory, 
though the third-order errors are certainly very noticeable a t  e = 0.2 and the second- 
order terms in the eighth mode, which are relatively small, are dominated by the 
third-order terms even fore  = 0.05. For e = 0.2 the sixth and eighth modes look much 
like those in figure 8 reduced by about 30%. The tenth mode, which should be third 
order, is about half as large as the eighth. The second mode has a much reduced 
contribution (compared with figure 8) from the natural second-mode frequency. We 
find that the fourth-mode frequency, for c = 0.1 and e = 0.2, is in agreement with the 
theory within kO.01, which is our reading accuracy. 
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FIQURE 11. Fifth-mode oscillations with the same initial conditions as in figure 10 but with R, = 
2000 and D, = 0.01. ( a )  Normalized amplitude of the right end showing resonance with the eighth 
mode which has double the (linearized) natural frequency. ( b )  The generation and decay of the 
eighth mode is seen more clearly in these energy traces. ( c )  Modal amplitude of the fifth mode. 
( d )  Modal amplitude of the eighth mode. 

5.3. Fifth-mode results 

Figure 10 shows typical fifth-mode shapes for about one period computed with initial 
conditions r = 1 +0.2P5, $ = 0. Figure 11 shows the results when Re = 2000 and 
D, = D, = 0.01. In  figure 11 (a )  an oscillation with frequency double the fundamental 
frequency becomes apparent after a short time. This is clearly seen in the energy 
figure, and is even more clearly seen in figure 11 (c and d ), which show the modal 
amplitudes of the fifth and eighth modes. This is caused by second-order quadratic 
coupling with the eighth mode which has linear frequency double that of the fifth 
mode (u: = (70):, w! = 2(70)1). This mode coupling was pointed out and ltnalysed by 
Natarajan & Brown (1986). They showed, for non-viscous axially symmetric drop 
oscillations, that when there is initially some energy in each of these two modes there 
will be a slow periodic transfer of energy back and forth between the modes. In  the 
limit when all of the energy is initially in the fifth mode, as in our computation, they 
show that the period goes to infinity and there will be an irreversible slow trankfer 
of energy to the eighth mode. (They also show that this axially symmetric problem 
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FIGURE 12. Same as figure 11 with Re = 4000 and with twice the integration time. This shows a 
decaying slow oscillation between the fifth and eighth modes. 

is unstable to non-axially symmetric disturbances. The instability generates finite- 
amplitude circumferential waves. Three-dimensional computations are planned for 
future work.) From the figures we see what appears to be the beginning of a slow 
transfer to the eighth mode which is impeded by the larger viscous damping a t  this 
higher frequency. In  fact the damping is so great that  the eighth mode begins to die 
out before the transfer is complete and we end up with most of the remaining energy 
in the fifth mode. This case was rerun with N = 61 and At = 0.01 for double the time 
interval to verify that the eighth mode does continue to decay. 

A long, high quality computation (N = 101, At = 0.005) was made with a smaller 
viscosity, Re = 4000. The results in figure 12 show that with the smaller viscous 
damping the initial transfer to the eighth mode is about the same before it begins to 
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FIGURE 13. Same conditions as figure 12 showing a number of other modal amplitudes. 

decay. Therefore the viewpoint that  the considerable undershoot of full transfer to 
the eighth mode is purely a viscous effect must be wrong. The energy result in figure 
12(6) would seem to indicate that the eighth mode again decays away completely; 
however the mode decomposition in figure 12 ( d )  shows in fact that  i t  slowly increases 
again before decaying out. This looks more like viscous damping of the slow periodic 
case that results when energy is initially in both modes, despite the fact that  all the 
energy was initially in the fifth mode. We believe that this feature is not caused by 
viscosity but is a finite-amplitude effect. Several runs with smaller e, and zero 
viscosity, show that a greater fraction of the energy is transferred to  the eighth mode 
before it decreases. When e = 0.1 the amplitude of P8 increased to what looked like 
a maximum a t  70% of the initial P5 by the end of the run, a t  t = 20. The problem 
is that  as e is made smaller the timescale for the slow variation becomes longer (like 
e-l) and therefore it is difficult to  know whether the amplitude would continue to 
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increase without making longer and longer runs with smaller and smaller e. With any 
small viscosity, however, the limit as 6 tends to zero would ultimately be dominated 
luy viscosity as the viscous decay time becomes shorter than the timescale for the 
slow amplitude modulation. 

In figure 13 the remaining modes are shown. The second mode is excited a t  its 
natural frequency by the same mechanism discussed for fourth-mode oscillations. The 
seventh and ninth modes are also excited at their natural frequencies, but apparently 
by a different mechanism since the oscillations are symmetric about the origin. 

We have done additional computations with larger amplitudes. The case r = 
1 +0.25P5, q5 = 0 gives results much like those already seen. When the amplitude is 
0.3 the computation fails in a manner similar to the failure of the large-amplitude 
fourth- mode computations. 

6. Conclusions 
A numerical boundary-integral method has been developed which is applicable to 

the axially symmetric motion of large liquid drops. The method shows considerable 
flexibility. Figure 4 shows that it may be used for extremely large motions and 
suggests its usefulness in further studies of drop or jet breakup. 

A novel method of including the effects of small viscosity has been derived in 
which these effects are adapted to the boundary-integral method in the form of 
modificd surface boundary conditions which produce higher-order corrections to the 
potential flow. In earthbound flows of contained liquids with free surfaces the main 
source of viscous effects is from boundary layers a t  the solid surfaces, with much 
smaller contributions from the free surface. In  zero-gravity containerless flows the 
only source of damping is the latter weak free-surface contribution, which therefore 
takes on a greater significance. A rather large effect of small viscosity is seen in figures 
11, 12 and 13 where resonant energy transfer from the fifth mode to the higher 
(double) frequency eighth mode is modified because of the larger effect of viscosity 
on the higher mode. We see this as similar to turbulent flow where energy is 
transferred to smaller scales where it is dissipated. 

The effect of viscosity was much smaller in the fourth-mode computations. It is 
seen mainly as a more rapid decay of the higher-mode content of the oscillations. At 
zero viscosity we found that the finite-amplitude frequency shift of the fourth mode 
was in agreement with the prediction of Tsamopoulos & Brown (1983). 

One of the authors (T.S.L.) wishes to acknowledge support from NASA/Ames 
Rcscarch Center Director's Discretionary Fund. Contract NCAZ- 114, during the 
summers of 1986 and 1987. 
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